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Abstract

Motivation: Many researchers with domain expertise are unable to easily apply machine learning (ML) to their bio-
informatics data due to a lack of ML and/or coding expertise. Methods that have been proposed thus far to automate
ML mostly require programming experience as well as expert knowledge to tune and apply the algorithms
correctly. Here, we study a method of automating biomedical data science using a web-based AI platform to recom-
mend model choices and conduct experiments. We have two goals in mind: first, to make it easy to construct sophis-
ticated models of biomedical processes; and second, to provide a fully automated AI agent that can choose and con-
duct promising experiments for the user, based on the user’s experiments as well as prior knowledge. To validate
this framework, we conduct an experiment on 165 classification problems, comparing to state-of-the-art, automated
approaches. Finally, we use this tool to develop predictive models of septic shock in critical care patients.

Results: We find that matrix factorization-based recommendation systems outperform metalearning methods for
automating ML. This result mirrors the results of earlier recommender systems research in other domains. The pro-
posed AI is competitive with state-of-the-art automated ML methods in terms of choosing optimal algorithm configu-
rations for datasets. In our application to prediction of septic shock, the AI-driven analysis produces a competent ML
model (AUROC 0.8560.02) that performs on par with state-of-the-art deep learning results for this task, with much
less computational effort.

Availability and implementation: PennAI is available free of charge and open-source. It is distributed under the GNU
public license (GPL) version 3.

Contact: lacava@upenn.edu or jhmoore@upenn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Experimental data are being collected faster than it can be under-
stood across scientific disciplines (Bansal, 2014). The hope of
many in the data science community is that widely accessible,
open-source artificial intelligence (AI) tools will allow scientific
insights from these data to keep abreast of their collection (Olson
et al., 2017c). AI is expected to make significant improvements to
scientific discovery, human health and other fields in the coming
years. One of the key promises of AI is the automation of learning
from large sets of collected data. However, at the same time that
data collection is outpacing knowledge discovery, methodological
improvements from the machine learning (ML) and AI commun-
ities are outpacing their dissemination to other fields. As a result,
AI and ML continue to have steep learning curves for non-

experts, especially for researchers pressed to gain expertise in their
own disciplines.

Specialized researchers would benefit greatly from increasingly
automated, accessible and open-source tools for AI. With this in
mind, we proposed a free and open-source platform called PennAI
(http://github.com/EpistasisLab/pennai) (University of Pennsylvania
Artificial Intelligence) that allows the non-expert to quickly conduct
a ML analysis on their data (Olson et al., 2017c). PennAI uses a web
browser-based user interface (UI) to display a user’s datasets, experi-
ments and results, shown inFigure 1. To automate the user’s ana-
lysis, PennAI automatically configures and runs supervised learning
algorithms catered to the user’s datasets and previous results.

In addition to its use as a data science tool, PennAI serves as a
test-bed for methods development by AI researchers who wish to de-
velop automated machine learning (AutoML) methods. AutoML is
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a burgeoning area of research in the ML community that seeks to
automatically configure and run learning algorithms with minimal
human intervention. A number of different learning paradigms have
been applied to this task, and several tools are available to the re-
search community (Feurer et al., 2015, 2018; Hutter et al., 2011;
Komer et al., 2014; Kotthoff et al., 2017; Olson et al., 2016) as well
as commercially (H2O) (Real, 2018). An AutoML competition has
been running since 2015 (http://automl.chalearn.org/) focused vari-
ous budget-limited tasks for supervised learning (Guyon et al.,
2016).

Despite what their name implies, many leading AutoML tools
are highly configurable and require coding expertise to operate
(Feurer et al., 2015, 2018; Hutter et al., 2011; Komer et al., 2014;
Kotthoff et al., 2017; Olson et al., 2016), which leaves a gap for
adoption to new users. Furthermore, AutoML tools typically wrap
many ML analyses via the automation procedure, obscuring the
analysis from the user and preventing user input or guidance. In con-
trast to these strategies, PennAI interacts with the user through algo-
rithm recommendations, and can learn from both its own analysis
and that of the user. This interaction is achieved using a web-based
recommender system. We present a detailed background of different

AutoML strategies in Supplementary Material. In Table 1, a sum-
mary of the similarities and differences between a handful of popu-
lar AutoML tools and PennAI is given.

Recommender systems are well-known inference methods under-
lying many commercial content platforms, including Netflix
(Bennett and Lanning, 2007), Amazon (Smith and Linden, 2017),
YouTube (Davidson et al., 2010) and others. There have been lim-
ited, yet promising, studies of recommender systems as AutoML
approaches (Fusi et al., 2018; Yang et al., 2018). However, to date,
there has not been an attempt to compare and contrast different
underlying strategies. To fill this gap, we benchmark several state-
of-the-art recommender systems in this article, using a large experi-
mental design that tests their use as an AutoML strategy.

Our first aim is to assess the ability of state-of-the-art recom-
mender systems to learn the best ML algorithm and parameter set-
tings for a given dataset over a set number of iterations in the
context of previous results. We compare collaborative filtering
approaches as well as metalearning approaches on a set of 165
open-source classification problems. We find that the best algo-
rithms (matrix factorization) work well without leveraging dataset
metadata, in contrast to other AutoML approaches. We
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Fig. 1. Overview of the UI. (A) Users upload datasets and choose a custom experiment (right), or allow the AI to run experiments of its choosing by clicking the AI button

(left). (B) Experiments are tabulated with configuration and performance information. The user may download scripts to reproduce the experiment in python, or export the fit-

ted model. (C) The results page displays experiment information and statistics of the fitted model, including various performance measures [confusion matrix, receiver operat-

ing characteristic (ROC) curve, etc.] as well as feature importance scores for the independent variables

Table 1. A comparison of AutoML tool characteristics and PennAI

Tool Method Free Open source Code-free UI Learns from user

PennAI Recommender systems � � � �

HyperoptSklearn Bayesian Opt � �

AutoSklearn Bayesian Optþmetalearning � �

TPOT Genetic programming � �

H20.AI Genetic algorithms � �
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demonstrate the ability of PennAI to outperform Hyperopt and per-
form on par with AutoSklearn, two popular AutoML tools for
Python. Our second goal is to test PennAI in application to predict-
ive modeling in the biomedical context. To this end, we use PennAI
to develop predictive models of septic shock using the MIMIC-III
(Johnson et al., 2016) critical care database. We find that PennAI is
useful for quickly finding models with strong performance, in this
instance producing a model with performance on par with effort-
intensive, recurrent deep neural networks. We include a sensitivity
analysis of the predictive model of septic shock produced by PennAI
that lends credence to its predictions.

2 Materials and methods

Here, we will briefly describe the UI of PennAI. In Section 2.1, we
describe the recommender systems that we benchmark in our experi-
ments for automating the algorithm selection problem. Figure 1
gives an overview of the data science pipeline. Users upload datasets
through the interface or optionally by pointing to a path during
startup. At that point, users can choose between building a custom
experiment (manually configuring an algorithm of their choice) or
simply clicking the AI button. Once the AI is requested, the recom-
mendation engine chooses a set of analyses to run. The AI can be
configured with different termination criteria, including a fixed
number of runs, a time limit, or running until the user turns it off.
As soon as the runs have finished, the user may navigate to the
results page, where several visualizations of model performance are
available (Fig. 1C).

PennAI is available as a docker image that may be run locally or
on distributed hardware. Due to its container-based architecture, it
is straightforward to run analysis in parallel, both for datasets and
algorithms, by configuring the docker environment. For more infor-
mation on the system architecture, refer to Supplementary Material.

2.1 Recommendation system
To use recommender systems as a data science assistant, we treat
datasets as users, and algorithms as items. The goal of the AI is
therefore as follows: given a dataset, recommend an algorithm con-
figuration to run. Once the algorithm configuration has been run,
the result is now available as a rating of that algorithm configur-
ation on that dataset, as if the user had rated the item. This context
is beneficial for recommender systems, since normally users only oc-
casionally rate the items they are recommended. We denote this
knowledge base of experimental results as D ¼ frad; rbe; . . .g, where
rad is the test score, i.e. rating, of algorithm configuration a on data-
set d. In our experiments, the test score is the average 10-fold CV
score of the algorithm on the dataset.

With a few notable exceptions discussed below, the recommen-
ders follow this basic procedure:

1. Whenever new experiment results are added to D, update an in-

ternal model mapping datasets, d, to algorithm configurations,

a.

2. Given a new recommendation request, generate r̂ad, the esti-

mated the score of algorithm configuration a on dataset d. Do

this for every ad pair that has not already been recommended.

3. Return recommended algorithm configurations in accordance

with the termination criterion, in order of best rating to worst.

Note that, the knowledge base D can be populated not only by
the AI, but by the user through manual experiments (Fig. 1A) and
by the initial knowledge base for PennAI. In production mode, the
knowledge base is seeded with approximately 1 million ML results
generated on 165 open-source datasets, detailed by Olson et al.
(2017a). The user may also specify their own domain-specific cache
of results.

We benchmark several recommender strategies in the experimen-
tal section of this article. Most of these recommenders are adapted
from the Surprise recommender library (Hug, 2017). We describe

each of them in Supplementary Material. Below, we describe the
method we found to be most successful in our experiments: singular
value decomposition (SVD).

2.1.1 Singular value decomposition

The SVD recommender is a collaborative filtering method popular-
ized by the top entries to the Netflix challenge (Bennett and
Lanning, 2007). Like other top entrants (Bell et al., 2007; Bell and
Koren, 2007), SVD is based on a matrix factorization technique that
attempts to minimize the error of the rankings via stochastic gradi-
ent descent (SGD). Each rating is estimated as

r̂ad ¼ lþ ba þ bd þ qT
a pd: (1)

Here, l is the average score of all datasets across all learners; ba

is the estimated bias for algorithm a, initially zero; bd is the esti-
mated bias for dataset d, initially zero; qa is a vector of factors asso-
ciated with algorithm a and pd is the vector of factors associated
with dataset d, both initialized from normal distributions centered
at zero. Ratings are learned to minimize the regularized loss
function

L ¼
X

rad2D
ðrad � r̂adÞ2 þ kðb2

a þ b2
d þ jjqajj

2 þ jjpdjj
2Þ: (2)

One of the attractive aspects of SVD is its ability to learn latent
factors of datasets and algorithms (qa and pd) that interact to de-
scribe the observed experimental results without explicitly defining
these factors, as is done in metalearning. A historical challenge of
SVD is its application to large, sparse matrices, such as the matrix
defined by datasets and algorithms (in our experiments, this matrix
is about 1 million elements). SVD recommenders address the com-
putational hurdle using SGD to estimate the parameters of
Equation 1 using the existing dataset ratings of algorithms only
(Gorrell, 2006). SGD is applied by the following update rules:

ba  ba þ cðead � kbaÞ
bd  bd þ cðead � kbdÞ

qa  qa þ cðeadpd � kqaÞ
pd  pd þ cðeadqa � kpdÞ:

(3)

Here, ead ¼ rad � r̂ad. The learning rate c and regularization par-
ameter k are tunable parameters. To facilitate online learning, the
parameters in Equation 3 are maintained between updates to the ex-
perimental results, and the number of iterations (epochs) of training
is set proportional to the number of new results.

3 Experiments

The goal of our experiments is to assess different recommendation
strategies in their ability to recommend better algorithm configura-
tions for various datasets as they learn over time from previous
experiments. The diagram in Figure 2 describes the experimental de-
sign used to evaluate recommendation strategies under PennAI.

Datasets We assessed each recommender on 165 open-source
classification datasets, varying in size (hundreds to millions of sam-
ples) and origin (bioinformatics, economics, engineering, etc.). We
used datasets from the Penn Machine Learning Benchmark (PMLB)
(Olson et al., 2017b). PMLB is a curated and standardized set of
hundreds of open source supervised ML problems from around the
web [sharing many in common with OpenML (Vanschoren et al.,
2014)]. In previous work, we conducted an extensive benchmarking
experiment to characterize the performance of different ML frame-
works on these problems (Olson et al., 2017a,b). The benchmark
assessed 13 ML algorithms over a range of hyperparameters detailed
in Supplementary Table S1 of Supplementary Material on these
problems. This resulted in a cache of over 1 million ML results
across a broad range of classification problems which we use here to
assess the performance of each recommender with a known ranking
of algorithms for each dataset. For the experiment in this article, we
used a subset of these results consisting of 12 ML algorithms
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(dropping one of three naı̈ve Bayes algorithms) with 7580 possible
hyperparameter configurations.

Evaluation of recommender systems The first experiment con-
sisted of 300 repeat trials for each recommender. In each trial, the
recommender began with a knowledge base of ninit experiments that
consist of single ML runs on single datasets. For each iteration of
the experiment, the recommender was asked to return nrecs recom-
mendations for a randomly chosen dataset. Once the recommenda-
tion was made, the 5-fold CV results on training data for the
recommended algorithm configurations were fed back to the recom-
mender as updated knowledge. Note that, this experiment mirrors a
reinforcement learning experiment in which the actions taken by the
recommender (i.e. the recommendations it makes) determine the in-
formation it is able to learn about the relationship between datasets
and algorithm configurations. To assess the quality of these recom-
mendations without overfitting, we used a separate, hold-out test set
performance score for each algorithm configuration on each dataset.
We report the scores of each algorithm configuration on these held-
out data throughout Section 4. For our experiments, we varied
ninit 2 ½1; 100;10 000� and nrecs 2 ½1; 10; 100�. These settings control
sensitivity to (i) starting with more information and (ii) exploring
more algorithm options during learning.

3.1 Comparison to state-of-the-art
Based on the results of our first experiment (Section 3), we chose a
final configuration for PennAI and benchmarked its performance
against two other state-of-the-art AutoML tools: AutoSklearn
(Feurer et al., 2015) and HyperoptSklearn (Komer et al., 2014). For
AutoSklearn, we restricted the search space to ML configurations to
bring it closer to the search spaces of PennAI and HyperoptSklearn
that do not use feature preprocessors. Otherwise, we used default
settings of both AutoSklearn and HyperoptSklearn. For this com-
parison, we performed a leave-one-out style analysis, meaning that
PennAI is trained on results from all other datasets prior to iterative-
ly making recommendations for a given dataset. This leave-one-out
analysis corresponds to the applied case, in which PennAI is
deployed with a pretrained recommender and must run experiments
for a newly uploaded dataset. For each method, we assessed the gen-
eralization performance of the returned model after a given number
of evaluations. For AutoSklearn, we assessed its performance as a
function of wall-clock run-time, since there was not an apples-to-
apples way to control the number of algorithm evaluations.

Comparison metrics Since we have the complete results of ML
analyses on our experiment datasets, we assessed recommendations
in terms of their closeness to the best configuration, i.e. that config-
uration with the best holdout performance on a dataset among all
algorithms in our exhaustive benchmark. Each algorithm configur-
ation is primarily assessed according to its balanced accuracy (BA),

a metric that considers class imbalance by averaging accuracy over
classes (Velez et al., 2007). Let the best balanced accuracy on a given
dataset be BA�d. Then the performance of a recommendation is
assessed as the relative distance to the best solution, as:

DBalanced Accuracyad ¼
ðBA�d�BAadÞ

BA�d
: (4)

In addition to Equation 4, we assessed the AI in terms of the
number of datasets for which it is able to identify an ‘optimal’ con-
figuration. Here, we defined ‘optimal’ algorithm configurations to
be those that score within some small threshold of the best perform-
ance for a dataset. This definition of optimality is of course limited,
both by the finite search space defined by the algorithm configur-
ation options and by the choice of threshold (we tried 1% and 5%).
Nonetheless, this definition gives a practical indicator of the extent
to which AI is able to reach the best known performance.

3.2 Illustrative example
In addition to testing different recommendation strategies within
PennAI, we applied PennAI to the task of generating a classification
model for predicting patient’s risk of septic shock. For this task, we
used the MIMIC-III (Johnson et al., 2016) critical care database and
preprocessed it according to prior work (Harutyunyan et al., 2019).
In addition to the binning process described by Harutyunyan et al.,
we calculated autocorrelations for each predictor at five different
lags to capture time series features. This resulted in a prediction
problem with 29 250 training patients, 6284 test patients and 60 de-
pendent variables.

We used the best performing PennAI configuration from our
experiments, i.e. the SVD algorithm. We began by allowing the AI
to suggest and run 10 experiments. We then manually chose five
additional algorithm configurations to run, using default settings in
PennAI. These algorithm configurations were chosen to simulate a
user who wishes to complement the AI’s choices by choosing differ-
ent algorithms. The simplest way for a user to do this is to choose
default ML configurations, and those are what we report for
LogisticRegression, Classification Tree and Random Forest. For the
SVC algorithm, we chose two different kernel options. PennAI’s
results page was used to validate models on the training set, and to
pick a final model for download. We then evaluated this down-
loaded model on the testing set using PennAI’s model export func-
tionality. Screenshots of this process are shown in Figure 1.

As a point of comparison, we trained a long-term–short-term
memory (LSTM) deep learning model using the architecture from
Harutyunyan et al. (2019). We trained the network for 100 epochs
and reported the test results of the final epoch. We also compared to
a tuned, penalized logistic regression and to septic shock models
from literature (Henry et al., 2015). We discuss these results in
Section 4.2.

4 Results

Results for the PMLB experiment are shown with ninit ¼ 1, nrecs ¼
10 is shown in Figure 3. The complete results for all settings of ninit

and nrecs are given in Supplementary Material. Recommenders are
first compared in terms of median DBalanced Accuracy (Equation 4)
in Figure 3. In Figure 4, we look at the fraction of datasets for which
SVD is able to find an optimal configuration under different experi-
ment treatments. In Supplementary Material, we visualize the be-
havior of a subset of recommenders to gain insight into which
algorithms are being selected and how this compares to the underly-
ing distribution of algorithm performance in the knowledgebase.

Let us first focus on the performance results in Figure 3. We find
in general that the various recommender systems are able to learn to
recommend algorithm configurations that increasingly minimize the
gap between the current recommendations and the best performance
on each dataset (on hold-out data). SVD performs the best, tending
to reach good performance more quickly than the other recommen-
dation strategies. This observation holds across treatments as shown

Fig. 2. Diagram describing the experimental design. We conduct 300 trials of the ex-

periment, each of which uses a different sampling of datasets. For each trial, 1000

iterations are conducted. The AI (recommender system) is initially trained on n_init

ML results from the Knowledge Base. Then, each iteration, n_recs recommenda-

tions are made by the AI for one dataset. These recommended ML configurations

are retrieved from the Knowledge Base and used to update the AI for the next

iteration
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in Supplementary Material (Fig. 2). Across all treatments, KNN-
data and KNN-ML tend to be the next best methods. KNN-ML
shows a sensitivity to the number of recommendations per iteration,
indicating it requires more results to form good clusters. For most
experimental treatments, there is a gap between those three methods
and the next best recommenders, which vary between SlopeOne,
KNN-meta and CoClustering for different settings.

As we expected due to its cold-start strategy, KNN-meta turns
out to work well initially, but over time fails to converge on a set of

high-quality recommendations. The collaborative filtering recom-
menders are generally able to learn quickly from few examples com-
pared to the metalearning approach. This difference in performance
suggests that the latent similarities between algorithms and between
datasets are better learned directly through their performance than
through properties of the datasets. Similar results have been
reported other domains, for example, in movie recommendations
(Pilászy and Tikk, 2009). In that domain, metadata such as genre,
director, etc. tends to be less useful for generating recommendations
than the user rankings themselves.

4.1 Comparison to AutoML
In Figure 4, we compare PennAI with SVD to AutoSklearn and
Hyperopt, two widely used AutoML tools. For these comparisons,
use the SVD algorithm for PennAI since it is shown to perform the
best in terms of DBalanced Accuracy in our prior analysis. The side-
by-side graphs of Figure 4 show the percent of datasets for which a
given method is able to return an algorithm within 5% (left) and
1% (right) of the best performance, as a function of computational
effort. The results show AutoSklearn finding best configurations
most often for the 5% threshold, and AutoSklearn and PennAI find-
ing best configurations at about the same rate for 1% threshold. In

Fig. 4. Cumulative success rates across all datasets using PennAI, AutoSklearn and

HyperoptSklearn. The success rate is the fraction of datasets for which the recom-

mender has trained an algorithm configuration that achieves a test set balanced ac-

curacy within 1 or 5% of the best performance on that dataset

Fig. 3. Experiment results for each recommendation strategy with ninit¼1, nrecs¼10.

Each plot shows the median DBalanced Accuracy (Equation 4) for 300 trials with

error bars denoting 95% confidence intervals. A lower DBalanced Accuracy indi-

cates that ML configurations being recommended are closer to the best known

configuration

Table 2. Area under the receiver operating curve (AUROC) scores for models chosen by the user and AI for predicting shock (Top); control

models for comparison (Bottom)

Model Hyperparameters (Sklearn syntax) Source 5-fold CV AUROC Test AUROC Training time

Logistic regression Penalty¼L2, C¼1.0, Dual¼False User 0.8460.03 0.7460.03 13 s

Penalty¼L1, C¼1e-3, Dual¼False AI 0.8160.03 0.8060.02 16 s

KNN classifier n_neighbors¼1, weights¼‘distance’ AI 0.6860.02 0.6760.03 1 min 1 s

n_neighbors¼7, weights¼‘uniform’ AI 0.8160.03 0.8060.03 11 min 3 s

n_neighbors¼11, weights¼‘uniform’ AI 0.8260.03 0.8160.02 11 min 13 s

Support vector kernel¼rbf, C¼1.0, degree¼3, gamma¼0.01 User 0.8560.02 0.8460.02 7 min 55 s

kernel¼polynomial, C¼1.0, degree¼3, gamma¼0.01 User 0.8260.01 0.8360.02 8 min 43 s

Classification tree criterion¼entropy, max_depth¼10 AI 0.7560.02 0.7560.03 5 s

criterion¼gini, max_depth¼10 user 0.7360.06 0.5960.04 6 s

Random forest criterion¼Gini, max_features¼‘sqrt’, n_estimators¼100 User 0.8860.06 0.8260.02 2 min 7 s

criterion¼entropy, max_features¼‘log2’, n_estimators¼100 AI 0.8360.06 0.7460.03 1 min 16 s

Gradient boosting learning_rate¼0.01, max_depth¼5, n_estimators¼500 AI 0.9060.05 0.8560.02 1 min 58 s

learning_rate¼0.1, max_depth¼5, n_estimators¼500 AI 0.8960.05 0.8360.02 2 min 25 s

learning_rate¼0.1, max_depth¼3, n_estimators¼500 AI 0.8960.05 0.8460.02 1 min 18 s

learning_rate¼1, max_depth¼1, n_estimators¼100 AI 0.8860.06 0.8260.03 10 s

Tuned logistic

regression

Penalty¼L2, 10 C values log-spaced in ½1e� 4; . . . ; 1e4� Control 0.8460.02 0.8160.02 1 min 8 s

LSTM dim¼256, depth¼1, dropout¼0.3, 100 epochs Harutyunyan

et al. (2019)

– 0.8660.02 30 h 21 min

Note: The model shown in bold was selected based on its 5-fold CV AUROC score, and reports a test AUROC within 1% of the LSTM model (bottom row).

Test AUROC is reported using the bootstrapped mean and standard error. Test AUROCs shown in gray are included for evaluation of overfitting, but in practice

would not be selected or exported.
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both cases, the performances of AutoSklearn and PennAI within a
few percent, whereas HyperoptSklearn tends to under-perform those
two methods. Additional comparisons of DBalanced Accuracy
(Equation 4) for these methods are given in Supplementary
Material.

4.2 Illustrative example
The screenshots in Figure 1 show the steps in the septic shock model
fitting procedure. In Table 2, the fitted models are detailed, includ-
ing the ML configuration, the 5-fold CV AUROC score, the test set
AUROC score and the training time. Based on the 5-fold CV
AUROC scores, the gradient boosting model shown in bold was
selected and exported from PennAI. This model achieved an
AUROC of 0.85 6 0.02 on the test data, compared to a mean of
0.86 6 0.02 for the LSTM model trained for 100 epochs. An advan-
tage of the PennAI-generated model is that it took less than 2 min to
train, whereas the LSTM model took more than 30 h, using an
NVIDIA GeForce GTX 970. Two caveats of this time comparison
are that (i) the LSTM is multi-task, i.e. it makes predictions for 25
different phenotypes; and (ii) the results were trained on different
hardwares. The PennAI results were generated on a single thread,
Intel(R) Core(TM) i7-6950X CPU @ 3.00 GHz. The LSTM results
were generated using an NVIDIA GeForce GTX 970 graphics proc-
essing unit. Nevertheless, the training time difference of approxi-
mately 915x is substantial.

Both model performances are in a similar range to state-of-the-
art early detection systems recently deployed to identify septic shock

in critical care patients (Henry et al., 2015). Figure 5 shows the
cross-validation ROC curves for the gradient boosting model of
shock, as well as a sensitivity analysis of the final model using per-
mutation importance (Breiman, 2001). The two most important fac-
tors to prediction are the mean Glasgow coma scale rating for the
patient and their minimum systolic blood pressure reading. The im-
portance of these two factors lends credence to the model, since they
are important for assessing septic shock (Henry et al., 2015). The
Glasgow coma scale is an indicator of assessment of the patient’s
consciousness and therefore a likely indicator for adverse events. A
drop in systolic blood pressure is a tell-tale signature of septic shock
and is used as a clinical diagnostic (Singer et al., 2016). Several of
the generated models identify these two factors as important for pre-
diction, as shown in Supplementary Material.

5 Conclusion

In this article, we propose a data science tool for non-experts that
generates increasingly reliable ML recommendations tailored to the
needs of the user. The web-based interface provides the user with an
intuitive way to launch and monitor analyses, view and understand
results, and download reproducible experiments and fitted models
for offline use. The learning methodology is based on a recommen-
dation system that can learn from both cached and generated results.
We demonstrate through the experiments in this article that collab-
orative filtering algorithms can successfully learn to produce intelli-
gent analyses for the user starting with sparse data on algorithm
performance. We find in particular that a matrix factorization algo-
rithm, SVD, works well in this application area.

PennAI automates the algorithm selection and tuning problem
using a recommendation system that is bootstrapped with a knowl-
edgebase of previous results. The default knowledgebase is derived
from a large set of experiments conducted on 165 open source data-
sets. The user can also configure their own knowledgebase of data-
sets and results catered to their application area. In our application
example, we used PennAI with a generic knowledgebase of datasets
to successfully train and validate a predictive model of septic shock;
we found that PennAI was able to quickly suggest a state-of-the-art
model, with little user input. In the future, we hope to further im-
prove PennAI’s ability to handle domain-specific tasks by creating
knowledgebases for particular areas such as electronic health
records and genetics.

We also hope that PennAI can serve as a testbed for novel AutoML
methodologies. In the near term, we plan to extend the methodology in
the following ways. First, we plan to implement a focused hyperpara-
meter tuning strategy that can fine-tune the models that are recom-
mended by the AI, similar to AutoSklearn (Feurer et al., 2015) or
Hyperopt (Komer et al., 2014). We plan to make this process transpar-
ent to the user so that they may easily choose which models to tune and
for how long. We also plan to increasingly automate the data prepro-
cessing, which is, at the moment, mostly up to the user. This can in-
clude processes from imputation and data standardization to more
complex operations like feature selection and engineering.
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